Nvidia is now halting all tests regarding autonomous vehicle driving on public roads. The company formerly tested its driver-free technology in California, New Jersey, Japan, and Germany. But the fatal crash in Arizona involving one of Uber’s self-driving cars pushed Nvidia into re-thinking its strategy. Just one error can be devastating.

“The accident was tragic. It’s a reminder of how difficult self-driving car technology is and that it needs to be approached with extreme caution and the best safety technologies,” a Nvidia spokesperson said. “This tragedy is exactly why we’ve committed ourselves to perfecting this life-saving technology.” 

A driver-free Uber vehicle struck a pedestrian late Sunday night in Tempe, Arizona. Elaine Herzberg, 49, was walking outside of the crosswalk when she was struck by the vehicle. She was rushed off to a hospital but died later from the injuries. Uber has since halted all autonomous vehicle testing on public roads. 

A big chunk of Nvidia’s keynote during its GPU Technology Conference opening focused on autonomous vehicles. Nvidia founder Jen-Hsun Huang admitted that safety is the hardest computing problem. Because so much is at stake, it needs to be addressed “step by step” to prevent future accidents similar to what happened in Tempe and Uber’s vehicle. 

“This is the ultimate deep-learning, A.I. problem,” he said. “We have to manage faults even when we detect them. The bar for functional safety is really, really high. We’ve dedicated our last five to seven years to understanding this system. We are trying to understand this from end to end.” 

He believes that autonomous vehicles will drive better than humans. They will be the staple of society as humans move away from cites due to overcrowding. Humans are also becoming more dependent on Amazon-like services where products are shipped to their doorsteps rather than customers venturing out to the store. Another 1 billion vehicles will come into society over the next 12 years, he predicted. 

For now, until Nvidia understands why the Uber vehicle struck a pedestrian, the company will depend on simulations and private lots to train its autonomous vehicle technology. As for its “fleet” of manually driven data collection vehicles, they will continue to roll across America’s highways. 

One topic discussed during Tuesday’s keynote focused on perception: The ability for the car to understand its surroundings. That includes the perception of space, distance, objects of any shape, scenes, paths, the weather and more totaling 10 “networks.” Nvidia plans to assign ten high-powered DGX-2 systems to each network. 

Huang also introduced the company’s next-generation supercomputer for self-driving cars called Drive Orin. The successor to the current Drive Pegasus model, it combines multiple Pegasus computers into one Orin package, providing more computing power in the same physical space. The company set out to require less power from the battery too, increasing the vehicle’s overall mileage. 

Also during the keynote, Nvidia showcased means for remotely taking control of a real-world autonomous vehicle using a virtual reality headset.  

Related Posts

How to Use Pollo AI Video Generator: A Step-by-Step Guide

Here we’re talking about the Pollo AI video generator which can be used with a variety of prompts, and I’ll talk you through using each one.

This 49-inch curved Samsung ultrawide is down to $799.99 and basically replaces two monitors at once

You’re getting a massive 49-inch curved Dual QHD panel, 120Hz refresh rate, USB-C, HDR400, and an adjustable stand that’s built for serious productivity but still fast and smooth enough for after-hours gaming.

Your next PC upgrade may soon get tougher and pricier after this Crucial news

Micron confirmed it is winding down Crucial’s consumer SSD and RAM business and shifting full focus to AI, enterprise, and hyperscale customers.