People around the world are generous in donating their blood every year to help provide the amount necessary for life-saving transfusions. But storing blood isn’t easy. While millions of units are donated to blood banks each year, donations can typically only be stored for around six weeks. However, thanks to research coming out of the University of Louisville, that may all be about to change.
Researchers in Louisville have developed a new technique for freeze-drying blood which could potentially enable it to last for years. This would be a major advance not only for our hospitals, but also for
“The freeze-drying process that we use to produce dried blood is based on the standard method often used to produce dried pharmaceuticals, which involves freezing samples and evaporating the water under vacuum,” Jonathan Kopechek, Assistant Professor in the Department of Bioengineering at the University of Louisville, told Digital Trends. “The unique aspect of our research is a novel method to load a protective sugar called trehalose into red blood cells so that the cells can survive the freeze-drying process.”
The innovative approach uses ultrasound to create pores in the blood cells. This then enables the researchers to load in the trehalose molecules. Although the research is still experimental, trehalose has previously been shown to be safe. It is already employed as a preservative for certain food items, including donut glaze. (And, hey, if it’s good enough for preserving donuts, it should be good enough for helping preserve blood!)
But Kopechek said that there is still more work that needs to be done before this can be rolled out to blood banks as a proven preservation technology.
“There is still more work to do before this technique can be used to produce dried blood for clinical use,” he explained. “We are working to scale up the process to produce larger quantities of dried blood and we are conducting additional testing to characterize the function and quality of the cells after processing.”
A paper describing the work, titled “Ultrasound-induced molecular delivery to erythrocytes using a microfluidic system,” was recently published in the journal Biomicrofluidics.
Related Posts
Starfish-inspired patch solves key issues for wearable heart sensors
These sensors, however, come with an inherent set of problems. Motion artifacts arising from movement or vigorous activity alter the blood flow and affect their accuracy. Optical heart rate sensors (photoplethysmography or PPG tech) also struggle with darker skin tones, tattoos, or even body placement.
The Chairman™ Pro package is on sale — and it’s the only shaving kit you’ll ever need
Want a little definition without going full lumberjack? The included two length-setting stubble combs help dial in the perfect length. With FlexAdjust™ Technology that adapts to every jawline and a precision trimmer edge for hard-to-reach spots, this thing is engineered for the real world—where your face doesn’t grow hair at perfect right angles.
You Asked: What’s the most impressive thing you saw at CES?
There’s been some really cool TV tech at CES, but the thing I’m most excited about is the new Panasonic Z95B. Instead of the regular OLED display structure we’ve seen in recent years with MLA technology, this uses a four-layer panel structure. It features individual red, green, and blue layers (two of the latter) for the emissive light.