Radio communications should travel perfectly through space, right? Well, not exactly, as it turns out. There’s plenty to interfere with radio communications away from the surface of Earth, including (but not limited to) cosmic noise and our planet’s fluctuating ionosphere that is perfectly capable of impairing the link between satellite and ground station.

To try and get around this problem, which could disrupt future space missions, researchers from Worcester Polytechnic Institute and Penn State University have been working with NASA to test what they call cognitive radios. These smart radios use artificial neural networks to adjust their settings in real time, optimizing their ability to stay in contact even under challenging circumstances. As such, they could be game-changers in difficult space environments where getting a human to reconfigure them may be next to impossible. In the team’s tests, the cognitive radios were able to maintain a clear signal between the  International Space Station (ISS) and the ground.

“Our cognitive radio maps the relationship between the parameters and the performance values of the space communication system, as well as includes the environmental conditions such as the signal-to-noise ratio, using an approach called reinforcement learning neural networks,” Alex Wyglinski, professor of electrical engineering and robotics engineering at Worcester Polytechnic, told Digital Trends.

“This approach works by having the cognitive radio ‘agent’ continuously receive information from the space communication environment about how well everything is going — ‘rewards’ — and [the] current configuration of the communication system, [referred to as] ‘states,’” he continued. “The agent feeds this information into an ensemble of neural networks, which produces a set of potential actions to be performed by the communication system. The actions with the potential to yield the best performance [are] then applied to the space communication system.”

The concept of cognitive radios dates back to 1998. Several prototypes have been built over the years, including models by the U.S. Department of Defense. But building a cognitive radio for space turns out to be a bit more difficult. To put it mildly.

“For our proof-of-concept space cognitive radio system, we designed and built a framework that would enable robust communications in a space environment, which is something much more challenging relative to similar wireless applications on Earth,” Wyglinski explained.

Sven Bilén, professor of engineering design, electrical engineering, and aerospace engineering at Penn State, told Digital Trends: “Our system is unique in that we are the first in-space test of cognitive communications.”

The researchers recently wrote an article about their work for IEEE Spectrum.

Related Posts

Blue Origin takes aim at SpaceX with rocket upgrade announcement

The new version will be known as New Glenn 9x4, while the current one will now be called New Glenn 7x2, with the new names indicating the number of engines attached to the rocket’s first and second stages.

Starship setback won’t stop 2026 launch plan, SpaceX says

The upcoming launch is notable for being the first to test a new, more advanced version of the first-stage Super Heavy booster. But in ground-based testing on Friday, an issue occurred with the first stage, known as Booster 18.

Start your week with this awesome ‘space ballet’ at the ISS

According to Kim, the 49-second timelapse, which uses more than two hours of footage, was recorded while Mission Control at NASA's Johnson Space Center in Houston practiced various maneuvers in preparation for capturing the NG-23 Cygnus spacecraft in the coming days.